Kinetics of the Electron-transfer Reaction, lodine with 'Cobalt(II) Sepulchrate ' †

Nigel Rudgewick-Brown and Roderick D. Cannon *

School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ

The reaction $I_2 + 2[Co(sep)]^{2+} \rightarrow 2I^- + 2[Co(sep)]^{3+}$ obeys the rate law $-d(ln[I_2]_T)/dt = k_0[I_2][Co(sep)^{2+}] + k_1[I_3^-][Co(sep)^{2+}]$ (sep = 1,3,6,8,10,13,16,19-octa-azabicyclo[6.6.6]icosane). At 25 °C in 0.1 mol dm⁻³ KCl, $k_0 = (5.9 \pm 0.8) \times 10^4$ dm³ mol⁻¹ s⁻¹ and $k_1 = (3.93 \pm 0.09) \times 10^4$ dm³ mol⁻¹ s⁻¹. These values are consistent with predictions from the Marcus cross-relation.

The caged complex 'cobalt sepulchrate' {hereafter written $[Co(sep)]^{3+}$ (sep = 1,3,6,8,10,13,16,19-octa-azabicyclo[6.6.6]icosane)} characterised by Sargeson and co-workers^{1,2} is a valuable new electron-transfer reagent. The couple $[Co-(sep)]^{3+/2+}$ is readily reversible, the oxidised and reduced forms have the same structure, and both are stable in aqueous solutions at low acidity ranges, in which aqua-metal ions are subject to hydrolysis and polymerisation. Herein we report the kinetics of reaction (1) in aqueous solution in the presence of iodide ion.

$$I_2 + 2[Co(sep)]^{2+} \longrightarrow 2I^- + 2[Co(sep)]^{3+}$$
 (1)

Experimental

Materials.—Cobalt(III) sepulchrate chloride. The products of reaction ^{1b,2} of tris(ethylenediamine)cobalt(III) chloride ³ with formaldehyde and ammonia were separated by ion exchange. A convenient method was to adjust the solution to pH 6-7 with HCl and pass it through a column of Amberlite IRC-50, H⁺-ion form. A pink product passed through with negligible retention, and after washing through with water, the orangevellow sepulchrate complex was eluted with 1 mol dm⁻³ hydrochloric acid. The eluate was freeze dried, then treated with a 1:1 mixture of ethanol and water. A brown impurity dissolved and the resultant yellow solid after filtering and drying with ethanol and diethyl ether was recrystallised from water. The visible absorption spectrum and ¹H n.m.r. spectrum (solution in H₂O, with D₂O as internal standard) agreed with those of Creaser et al. ia,b A convenient criterion of purity was the ⁵⁹Co n.m.r. spectrum. The cobalt(III) sepulchrate complex shows a single broad band, well separated from the band due to $[Co(en)_3]^{3+}$ (en = ethylenediamine) { $\delta =$ 6 940, and 7 155 p.p.m. respectively relative to $[Co(CN)_6]^{3-}$; widths 480 and 100 Hz, aqueous solution, 33 °C}. No band due to $[Co(en)_3]^{3+}$ could be detected in the sepulchrate samples.

Cobalt(II) sepulchrate solutions containing the required concentrations of Cl⁻ and I⁻ were prepared by dissolving [Co(sep)]Cl₃, KCl, and KI in water, and reducing with amalgamated zinc under a nitrogen atmosphere for 2 h, then used immediately. Reduction to $[Co(sep)]^{2+}$ is quantitative; the yellow colour of $[Co(sep)]^{3+}$ disappears completely but reappears on exposure to air. Iodine solutions were prepared by dissolving resublimed I₂ in solutions of KCl and KI with gentle heating if necessary, and deoxygenated by bubbling N₂. To minimise the evaporation of I₂, deoxygenation time was

† (1,3,6,8,10,13,16,19-octa-azabicyclo[6.6.6]icosane)cobalt(II).

limited to 5—10 min, and solutions were then kept tightly stoppered. Fresh solutions were prepared each day. All solutions were dispensed with hypodermic syringes, from vessels with rubber ' suba-seal ' stoppers (serum caps).

Kinetic Measurements.—The Aminco-Morrow stopped flow apparatus was used, modified for temperature control of the cell compartment.⁴ As an additional precaution against air-oxidation, the space around the mixing cell was flushed with nitrogen. The output was stored in a DL-901 Transient recorder, inspected visually with an oscilloscope, and transferred to a pen-chart recorder for permanent recording. For experiments at the higher iodide concentrations, wavelengths 440 and 400 nm were selected to give a convenient absorbance change ($A_0 - A_{\infty} \sim 0.2$). At the lower iodide concentrations, the minimum possible wavelength of 350 nm was used to give the highest possible absorbance change ($A_0 - A_{\infty} \sim 0.01$).

Results

In all the experiments cobalt(II) was taken in large excess over iodine. Plots of log $(A - A_{\infty})$ against time were linear over 3-4 half-lives indicating a pseudo-first-order rate law [equation (2)], where $[I_2]_T$ denotes the total stoicheiometric

$$- d[I_2]_T/dt = k_{obs.}[I_2]_T$$
⁽²⁾

iodine concentration, and this was confirmed by comparison of results with initial $[I_2]_T = 0.1$ and 0.2 mmol dm⁻³. Values of $k_{obs.}$ are listed in the Table. The cobalt(II) dependence was found to be linear as shown in Figure 1 [equation (3)].

$$k_{\rm obs.} = k[\rm Co(sep)^{2+}] \tag{3}$$

The iodide ion dependence was studied over the range 0-0.1 mol dm⁻³. Assuming the equilibrium (4) \ddagger we may express equations (2) and (3) as equation (5), giving equation (6).

$$I_2 + I^- \rightleftharpoons I_3^- \tag{4}$$

$$- d[I_2]_T/dt = (k_0[I_2] + k_1[I_3^-])[Co(sep)^{2+}]$$
(5)

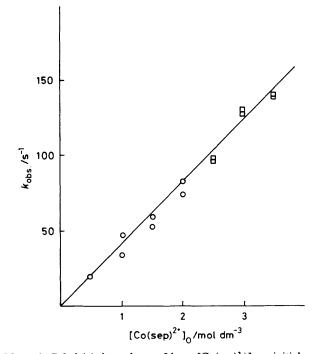
$$k = \frac{k_0 + k_1 K_1 [I^-]}{1 + K_1 [I^-]}$$
(6)

 \ddagger The formation of I_2Cl^- is neglected.

0.25

0.5

Table. Rate constants $(k_{obs.}/s^{-1})$ of $I_2 + [Co(sep)]^{2+}$ reactions ^a				
$[Co(sep)^{2+}]^{b}/$	[I_] ^b /10 ⁻³	[I-1 »/10-3	No. of	
			determinations	$k_{\rm obs.}/{\rm s}^{-1}$
3.5	0.1	100	ء و	139.7 ± 3.5
3.5	0.2	100	8 c	139.0 ± 1.9
3.0	0.1	100	8 c	129.6 ± 5.0
3.0	0.2	100	8 c	127.6 ± 5.1
2.5	0.1	100	10 °	97.2 \pm 9.0
2.5	0.2	100	10 °	96.1 ± 1.9
2.0	0.1	100	6 ^d	82.3 ± 1.7
2.0	0.2	100	6 4	73.8 ± 1.3
1.5	0.1	100	8 4	52.3 ± 2.4
1.5	0.05	100	5 4	59.0 ± 1.3
1.0	0.1	100	11 4	33.7 ± 4.9
1.0	0.05	100	8 4	45.8 ± 1.6
0.5	0.05	100	4 ^d	18.8 + 0.4
0.5	0.05	14.3	94	20.3 ± 1.2
0.5	0.05	5.0	9 ⁴	22.2 \pm 1.1
0.25	0.025	3.0	6 e	14.3 + 0.9
0.25	0.025	1.5	7 e	13.9 ± 1.1
0.25	0.025	1.0	6 e	15.2 + 3.2
ò 25	0.025	0.5	10 e	11.4 ± 1.2
0.25	0.025	0.25	6 ^e	13.1 ± 0.8
0.25	0.025	0.1	7 e	13.9 ± 1.7


• T = 25 °C, $[I^-] + [CI^-] = 0.10$ mol dm⁻³. • Initial total stoicheiometric concentration after mixing. ° $\lambda = 440$ nm. • $\lambda = 400$ nm. • $\lambda = 350$ nm.

0

0

0.025

0.05

Figure 1. Cobalt(11) dependence of $k_{obs.}$; $[Co(sep)^{2+}]_0 = initial concentration. Points are drawn from experiments at wavelength <math>\lambda = 440$ (O) and 400 nm (\Box)

Using $K_1 = 676 \text{ dm}^3 \text{ mol}^{-1}$,⁵ a plot of $k(1 + K_1[I^-])$ versus [I⁻] is satisfactorily linear (Figure 2). Least-squares fitting gives $k_0 = (5.9 \pm 0.8) \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, and $k_1 = (3.93 \pm 0.09) \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, at 25 °C and $I = 0.1 \text{ mol} \text{ dm}^{-3}$ (KCl).

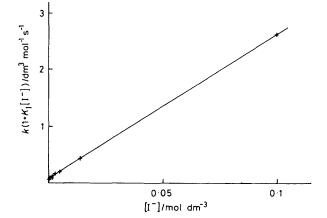


Figure 2. Iodide-ion dependence of k. The line is drawn according to equation (6) of the text with $k_0 = 5.9 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, $k_I = 3.93 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, and $K_I = 676 \text{ dm}^3 \text{ mol}^{-1}$

Discussion

 14.8 ± 1.5

 $\textbf{28.1} \pm \textbf{5.8}$

8 4

8 ^d

A mechanism consistent with the rate law is given by equations (7)—(9), where steps (7) and (8) are rate-determining. The

$$I_2 + [Co(sep)]^{2+} \xrightarrow{k_0} I_2^- + [Co(sep)]^{3+}$$
 (7)

$$I_3^- + [Co(sep)]^{2+} \xrightarrow{k_1} I_2^- + I^- + [Co(sep)]^{3+}$$
 (8)

$$I_2^- + [Co(sep)]^{2+} \longrightarrow 2I^- + [Co(sep)]^{3+}$$
 (9)

intermediate I_2^- has been postulated in many reactions of I_2 with one-electron reductants and of I^- with one-electron oxidants.⁶ An alternative to step (9) would be step (10) but

$$I_2^- + I_2^- \longrightarrow I_2 + 2I^-$$
 (10)

this has $k = 6.7 \times 10^9$ dm³ mol⁻¹ s⁻¹ at pH 6.5⁷ and in view of the low concentration of I₂⁻ it is probably too slow to compete. The iodine species on the right-hand sides of equations (8) and (9) are written as I₂⁻ + I⁻ and 2I⁻ rather than I₃²⁻ and I₂²⁻ on the assumption that the dianions would dissociate rapidly on the time-scale of the rate-determining step. The equilibrium (11) is also attained rapidly, but it has

$$\mathbf{I}_2^- \rightleftharpoons \mathbf{I}^- + \mathbf{I} \tag{11}$$

 $K = 0.8 \times 10^{-5}$ mol dm⁻³,⁸ and hence is displaced well to the left at all but the lowest I⁻ concentrations used in this work. A value of k_0 can be estimated by applying a correlation previously found by Woodruff and Margerum ⁶ for rate constants k_{12} of one-electron reductions of I₂ by various metal complexes, M¹¹¹. This may be expressed by equations (12) and (13), where k_{11} and k_{22} are self-exchange rate constants for the couples

$$\log k_{12} = \frac{1}{2} \log k_{11} + \frac{1}{2} \log k_{22} + \frac{1}{2} \log f + m \log K_{12} \quad (12)$$

$$\log f = (\log K_{12})^2 / 4\log (k_{11}k_{22}/Z^2)$$
(13)

M^{III/II} and I_2/I_2^- , K_{12} is the equilibrium constant corresponding to k_{12} , and Z is the encounter rate constant for uncharged species. Woodruff and Margerum found m = 0.43 rather than the value of 0.5 required by Marcus' theory.⁹ In the present case, taking log $k_{11} = 0.71$,¹ log $k_{22} = 4.93$,⁶ log $K_{12} = 6.95$ {taking E^{\oplus} for $[Co(sep)]^{3+/2+} = -0.30$ V¹ and E^{\oplus} for $I_2/I_2^- = 0.11$ V¹⁰} and log Z = 11.0, we have log f = -0.74 and log $k_{12} = 5.4$, as compared with the experimental value of 4.8.

The ratio k_1/k_0 found in this work may be compared with corresponding ratios for reactions with three other reducing agents, *viz.*: $[Co(edta)]^{2-}$ (edta = ethylenediaminetetraacetate), 0.06; ⁶ $[Co(cdta)]^{2-}$ (cdta = *trans*-cyclohexane-1,2-diamine-*NNN'N'*-tetra-acetate), 0.3; ⁶ $[Co(sep)]^{2+}$, 0.7; Fe²⁺, 1.7.¹¹ The higher values for positively charged reactants could be accounted for by differences in the work terms, the reaction with I_3^- being favoured by increased stability of the M¹¹¹- I_3^- ion pair.

Acknowledgements

Equipment for this study was provided by the Royal Society. N. R-B. held an S.E.R.C. Research Studentship. We thank Professor R. K. Harris and Mr. D. Burton for the ⁵⁹Co n.m.r. data.

References

1 (a) I. I. Creaser, J. MacB. Harrowfield, A. J. Herlt, A. M. Sargeson, J. Springborg, R. J. Geue, and M. R. Snow, J. Am.

Chem. Soc., 1977, **99**, 3181; (b) I. I. Creaser, R. J. Geue, J. MacB. Harrowfield, A. J. Herlt, A. M. Sargeson, M. R. Snow, and J. Springborg, *ibid.*, 1982, **104**, 6016; (c) A. M. Sargeson, Chem. Br., 1979, **15**, 23.

- 2 J. MacB. Harrowfield, A. J. Herlt, A. M. Sargeson, and T. Del Donno, *Inorg. Synth.*, 1982, 20, 85.
- 3 D. L. Cason and H. M. Neumann, J. Am. Chem. Soc., 1961, 83, 1822.
- 4 R. D. Cannon and J. S. Stillman, Inorg. Chem., 1975, 14, 2207.
- 5 L. G. Sillén and A. E. Martell, 'Stability Constants of Metal-Ion Complexes,' Spec. Publ. No. 17, The Chemical Society, London, 1964.
- 6 W. H. Woodruff and D. W. Margerum, Inorg. Chem., 1974, 13, 2578.
- 7 M. E. Langmuir and E. Hayon, J. Phys. Chem., 1967, 71, 3808. 8 J. H. Baxendale, P. L. T. Bevan, and D. A. Stott, Trans. Faraday
- Soc., 1968, 64, 2389.
- 9 R. A. Marcus, Ann. Rev. Phys. Chem., 1964, 15, 155.
- 10 W. H. Woodruff and D. W. Margerum, Inorg. Chem., 1973, 12, 962.
- 11 A. V. Hershey and W. C. Bray, J. Am. Chem. Soc., 1936, 58, 1760.

Received 18th May 1983; Paper 3/803